Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Orthop Sci ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38423870

RESUMO

BACKGROUND: The purpose of this study was to compare fracture characteristics and functional outcomes between patients with proximal humerus fractures with and without initial varus displacement. METHODS: A retrospective review of 325 patients with proximal humerus fractures was performed. Patients with initial varus displacement were placed in Varus cohort and were age- and sex-matched 1:1 with a second cohort presenting proximal humerus fractures without varus displacement, referred to as Fracture cohort. Varus fracture displacement was defined when the most proximal aspect of humeral head was below the most proximal aspect of greater tuberosity on initial radiographs, and the head shaft angle was <130°. RESULTS: There were 60 patients in V cohort and 60 patients in F cohort. Statistical analysis revealed that there were significant differences in initial horizontal offset (38.8 vs. 45.9 mm), initial anterior angulation angle (36.5° vs. 16.4°), postoperative head shaft angle (132.2° vs. 141.3°), last head shaft angle (122.2° vs. 138.5°), difference for head shaft angles (10.0° vs. 2.7°), postoperative horizontal offset (43.4 vs. 45.3 mm), last horizontal offset (38.4 vs. 42.8 mm), difference for offsets (4.9 vs. 2.5 mm), complications (15 vs. 7 cases), and revision surgery (7 vs. 1 case) between two cohorts. Overall satisfactory results were achieved in most patients regardless of varus displacement, pain-VAS and Constant scores in V cohort were inferior to the scores in F cohort. The cut-off value of postoperative head shaft angle for good/excellent outcomes was 135.5° using receiver operating characteristic curve analyses. CONCLUSION: Varus displaced proximal humerus fractures were accompanied by decreased horizontal offset and increased anterior angulation angle, and had a course of more varization and horizontal shortening compared with those without initial varus displacement. Patients with varus displaced fractures were associated with worse functional outcomes, and these factors might affect functional outcomes. LEVEL OF EVIDENCE: Prognostic, cohort study, Level III.

2.
Int J Biol Macromol ; 254(Pt 1): 127475, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37863147

RESUMO

Polyhydroxybutyrate (PHB) is a well-known biodegradable bioplastic synthesized by microorganisms and can be produced from volatile fatty acids (VFAs). Among VFAs acetate can be utilized by Halomonas sp. YLGW01 for growth and PHB production. In this study, Halomonas sp. JJY01 was developed through introducing acetyl-CoA acetyltransferase (atoAD) with LacIq-Ptrc promoter into Halomonas sp. YLGW01. The effect of expression of atoAD on acetate was investigated by comparison with acetate consumption and PHB production. Shake-flask study showed that Halomonas sp. JJY01 increased acetate consumption rate, PHB yield and PHB production (0.27 g/L/h, 0.075 g/g, 0.72 g/L) compared to the wild type strain (0.17 g/L/h, 0.016 g/g, 0.11 g/L). In 10 L fermenter scale fed-batch fermentation, the growth of Halomonas sp. JJY01 resulted in higher acetate consumption rate, PHB yield and PHB titer (0.55 g/L/h, 0.091 g/g, 4.6 g/L) than wild type strain (0.35 g/L/h, 0.067 h/h, 2.9 g/L). These findings demonstrate enhanced acetate utilization and PHB production through the introduction of atoAD in Halomonas strains.


Assuntos
Halomonas , Hidroxibutiratos , Hidroxibutiratos/metabolismo , Halomonas/genética , Halomonas/metabolismo , Acetil-CoA C-Acetiltransferase/metabolismo , Poli-Hidroxibutiratos , Acetatos/metabolismo , Poliésteres/metabolismo
3.
Anal Biochem ; 685: 115390, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-37951454

RESUMO

To alleviate environmental problems caused by using conventional plastics, bioplastics have garnered significant interest as alternatives to petroleum-based plastics. Despite possessing better degradability traits compared to traditional plastics, the degradation of bioplastics still demands a longer duration than initially anticipated. This necessitates the utilization of degradation strains or enzymes to enhance degradation efficiency, ensuring timely degradation. In this study, a novel screening method to identify bioplastic degraders faster was suggested to circumvent the time-consuming and laborious characteristics of solid-based plate assays. This liquid-based colorimetric method confirmed the extracellular esterase activity with p-nitrophenyl esters. It eliminated the needs to prepare plastic emulsion plates at the initial screening system, shortening the time for the overall screening process and providing more quantitative data. p-nitrophenyl hexanoate (C6) was considered the best substrate among the various p-nitrophenyl esters as substrates. The screening was performed in liquid-based 96-well plates, resulting in the discovery of a novel strain, Bacillus sp. SH09, with a similarity of 97.4% with Bacillus licheniformis. Furthermore, clear zone assays, degradation investigations, scanning electron microscopy, and gel permeation chromatography were conducted to characterize the biodegradation capabilities of the new strain, the liquid-based approach offered a swift and less labor-intensive option during the initial stages.


Assuntos
Esterases , Plásticos , Plásticos/química , Esterases/química , Ensaios de Triagem em Larga Escala , Colorimetria , Biopolímeros
4.
BMC Musculoskelet Disord ; 24(1): 731, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37710239

RESUMO

BACKGROUND: Segmental fractures often result from high-energy or indirect trauma that causes bending or torsional forces with axial loading. We evaluated surgical outcomes of patients with forearm segmental diaphyseal fractures. METHODS: We retrospectively analyzed data from patients with forearm segmental fractures for which they underwent surgery at the Pusan National University Trauma Center from March 2013 to March 2022. We also analyzed accompanying injuries, injury severity score (ISS), injury mechanism, occurrence of open fracture, surgical technique, and treatment results. RESULTS: Fifteen patients were identified, one with bilateral segmental diaphyseal forearm bone fracture, for a total of 16 cases. Nine of the patients were male. The overall mean age was 50 years, and the mean follow-up period was 16.2 months. Six cases who underwent surgery using plate osteosynthesis achieved bone union without length deformity at final follow-up. Three of seven patients who underwent intramedullary nailing alone underwent reoperation due to nonunion. Six cases achieved bone union at final follow-up, three of which showed length deformity. Three patients underwent surgery using a hybrid method of IM nailing, plates, and mini cables. One patient who underwent surgery with a plate and one patient who underwent surgery with IM nailing alone showed nonunion and were lost to follow-up. CONCLUSION: Plate osteosynthesis is considered the gold standard for treatment of adult forearm diaphyseal segmental fractures. In this study, IM nailing was associated with high rates of non-union and length deformity. However, the combination of IM nailing and a plate-cable system may be an acceptable alternative in segmental diaphyseal forearm fracture, achieving a union rate similar to that provided by plate fixation.


Assuntos
Fixação Intramedular de Fraturas , Fraturas Expostas , Sinostose , Humanos , Adulto , Masculino , Pessoa de Meia-Idade , Feminino , Antebraço , Estudos Retrospectivos , Fixação Interna de Fraturas
5.
Microb Cell Fact ; 22(1): 171, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37661274

RESUMO

Polyhydroxyalkanoate (PHA) is one of the most promising materials for replacing petroleum-based plastics, and it can be produced from various renewable biomass sources. In this study, PHA production was conducted using Halomonas sp. YLGW01 utilizing mixed volatile fatty acids (VFAs) as carbon sources. The ratio and concentration of carbon and nitrogen sources were optimized through mixture analysis and organic nitrogen source screening, respectively. It was found that the highest cell dry weight (CDW) of 3.15 g/L and PHA production of 1.63 g/L were achieved when the ratio of acetate to lactate in the mixed VFAs was 0.45:0.55. Furthermore, supplementation of organic nitrogen sources such as soytone resulted in a ninefold increase in CDW (reaching 2.32 g/L) and a 22-fold increase in PHA production (reaching 1.60 g/L) compared to using inorganic nitrogen sources. Subsequently, DO-stat, VFAs consumption rate stat, and pH-stat fed-batch methods were applied to investigate and evaluate PHA productivity. The results showed that when pH-stat-based VFAs feeding was employed, a CDW of 7 g/L and PHA production of 5.1 g/L were achieved within 68 h, with a PHA content of 73%. Overall, the pH-stat fed-batch strategy proved to be effective in enhancing PHA production by Halomonas sp. YLGW01 utilizing VFAs.


Assuntos
Halomonas , Poli-Hidroxialcanoatos , Halomonas/genética , Ácidos Graxos Voláteis , Carbono , Ácido Láctico , Nitrogênio
6.
Indian J Orthop ; 57(9): 1415-1422, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37609026

RESUMO

Background: Percutaneous pedicle screw fixation (PPSF) without fusion has been recently recommended in the treatment of thoracolumbar fracture to reduce the adverse effects associated with the conventional open approaches and to restore range of motion. However, those studies report on the thoracolumbar junction, and there is no report on lower lumbar fracture. Purpose: To assess effectiveness of PPSF without fusion for treating lower lumbar burst (A3 and A4) fractures. Methods: A retrospective analysis was made to evaluate consecutive 50 patients with AO type A3 and A4 thoracolumbar fracture underwent PPSF. Patients were divided into a thoracolumbar junction (TLJ) group (T11-L2) and lower lumbar (LL) group (L3-5). The following items were measured and compared between the two groups. Vertebral height and consolidation, retropulsed fragment, sagittal curve and fixation failure were assessed with certain interval regularly. Results: The average height at pre- and post-reduction were 56.2% (36.2-74.3), 95.3% (84.2-98.3) in TLJ group and 65.7% (45.7-86.2), 91% (73.1-100) in LL group. The average canal area occupancy rate at pre- and post-reduction were 46.1% (37.4%-67.5%), 38.1% (31.3%-40.8%) in TLJ group and 40.4% (15.0-65.7), 19.3% (9.4-26.6) in LL group. Consolidation was completed within 12 months after surgery in both groups. There was no significant difference between two groups in clinical and radiographic parameters except cobb angle loss. Conclusion: Patients with lower lumbar fracture can be effectively managed with PPSF without fusion. PPSF following the implant removal can restore the movement of the lower lumbar spine, which is essential for daily life.

7.
Int J Biol Macromol ; 250: 126152, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37558031

RESUMO

The production cost of biodegradable polymer like polyhydroxybutyrate (PHB) is still higher than that of petroleum-based plastics. A potential solution for reducing its production cost is using a cheap carbon source and avoiding a process of sterilization. In this study, a novel PHB-producing microbial strain, Priestia sp. YH4 was screened from the marine environment using sugarcane molasses as the carbon source without sterilization. Culture conditions, such as carbon, NaCl, temperature, pH, inoculum size, and cultivation time, were optimized for obtaining the highest PHB production by YH4 resulting in 5.94 g/L of dry cell weight (DCW) and 61.7 % of PHB content in the 5 mL culture. In addition, it showed similar PHB production between the cultures with or without sterilization in Marine Broth media. When cultured using only tap water, sugarcane molasses, and NaCl in a 5 L fermenter, 24.8 g/L DCW was produced at 41 h yielding 13.9 g/L PHB. Finally, DSC (Differential Scanning Calorimetry) and GPC (Gel Permeation Chromatography) were used to analyze thermal properties and molecular weights resulting in Tm = 167.2 °C, Tc = 67.3 °C, Mw = 2.85 × 105, Mn = 1.05 × 105, and PDI = 2.7, respectively. Therefore, we showed the feasibility of more economical process for PHB production by finding novel strain, utilizing molasses with minimal media components and avoiding sterilization.

8.
Bioresour Technol ; 384: 129290, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37290712

RESUMO

Macroalgae (seaweed) is considered a favorable feedstock for polyhydroxyalkanoates (PHAs) production owing to its high productivity, low land and freshwater requirement, and renewable nature. Among different microbes Halomonas sp. YLGW01 can utilize algal biomass-derived sugars (galactose and glucose) for growth and PHAs production. Biomass-derived byproducts furfural, hydroxymethylfurfural (HMF), and acetate affects Halomonas sp. YLGW01 growth and poly(3-hydroxybutyrate) (PHB) production i.e., furfural > HMF > acetate. Eucheuma spinosum biomass-derived biochar was able to remove 87.9 % of phenolic compounds from its hydrolysate without affecting sugar concentration. Halomonas sp. YLGW01 grows and accumulates a high amount of PHB at 4 % NaCl. The use of detoxified unsterilized media resulted in high biomass (6.32 ± 0.16 g cdm/L) and PHB production (3.88 ± 0.04 g/L) compared to undetoxified media (3.97 ± 0.24 g cdm/L, 2.58 ± 0.1 g/L). The finding suggests that Halomonas sp. YLGW01 has the potential to valorize macroalgal biomass into PHAs and open a new avenue for renewable bioplastic production.


Assuntos
Halomonas , Poli-Hidroxialcanoatos , Alga Marinha , Açúcares , Furaldeído
9.
J Hand Surg Asian Pac Vol ; 28(3): 415-420, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37173139

RESUMO

Surgical principles in sarcoma are a wide resection, including surrounding tissues and maximisation of the function of the affected limb. Rotator cuff muscles are biomechanically important structures acting as a force couple in movement of the shoulder joint. Thus, conjoined tendons are essential for motion capability in absence of the supraspinatus muscle. This article reports a case of a large undifferentiated pleomorphic sarcoma (UPS) at the suprascapular fossa in a 78-year-old man. After diagnosis of sarcoma, he underwent wide, en-bloc excision preserving conjoined tendons of rotator cuff muscles and low-dose radiation therapy for surveillance of local recurrence. All dissection was performed to avoid contaminating the tumour and involved the whole supraspinatus except the conjoined tendons. We report a case of UPS at the suprascapular fossa, which showed a good result after a wide resection preserving conjoined tendons of rotator cuff muscles. Level of Evidence: Level V (Therapeutic).


Assuntos
Sarcoma , Neoplasias de Tecidos Moles , Masculino , Humanos , Idoso , Manguito Rotador/diagnóstico por imagem , Manguito Rotador/cirurgia , Sarcoma/cirurgia , Dissecação , Movimento (Física) , Movimento , Neoplasias de Tecidos Moles/diagnóstico por imagem , Neoplasias de Tecidos Moles/cirurgia
10.
J Biotechnol ; 367: 62-70, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37019156

RESUMO

Isobutanol is a potential biofuel, and its microbial production systems have demonstrated promising results. In a microbial system, the isobutanol produced is secreted into the media; however, the cells remaining after fermentation cannot be used efficiently during the isobutanol recovery process and are discarded as waste. To address this, we aimed to investigate the strategy of utilizing these remaining cells by combining the isobutanol production system with the indigo production system, wherein the product accumulates intracellularly. Accordingly, we constructed E. coli systems with genes, such as acetolactate synthase gene (alsS), ketol-acid reductoisomerase gene (ilvC), dihydroxyl-acid dehydratase (ilvD), and alpha-ketoisovalerate decarboxylase gene (kivD), for isobutanol production and genes, such as tryptophanase gene (tnaA) and flavin-containing monooxygenase gene (FMO), for indigo production. This system produced isobutanol and indigo simultaneously while accumulating indigo within cells. The production of isobutanol and indigo exhibited a strong linear correlation up to 72 h of production time; however, the pattern of isobutanol and indigo production varied. To our knowledge, this study is the first to simultaneously produce isobutanol and indigo and can potentially enhance the economy of biochemical production.


Assuntos
Escherichia coli , Índigo Carmim , Escherichia coli/genética , Fermentação , Butanóis
11.
Int J Biol Macromol ; 236: 123997, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36907298

RESUMO

Petrochemical-based plastics are hardly biodegradable and a major cause of environmental pollution, and polyhydroxybutyrate (PHB) is attracting attention as an alternative due to its similar properties. However, the cost of PHB production is high and is considered the greatest challenge for its industrialization. Here, crude glycerol was used as a carbon source for more efficient PHB production. Among the 18 strains investigated, Halomonas taeanenisis YLGW01 was selected for PHB production due to its salt tolerance and high glycerol consumption rate. Furthermore, this strain can produce poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (P(3HB-co-3 HV)) with 17 % 3 HV mol fraction when a precursor is added. PHB production was maximized through medium optimization and activated carbon treatment of crude glycerol, resulting in 10.5 g/L of PHB with 60 % PHB content in fed-batch fermentation. Physical properties of the produced PHB were analyzed, i.e., weight average molecular weight (6.8 × 105), number average molecular weight (4.4 × 105), and the polydispersity index (1.53). In the universal testing machine analysis, the extracted intracellular PHB showed a decrease in Young's modulus, an increase in Elongation at break, greater flexibility than authentic film, and decreased brittleness. This study confirmed that YLGW01 is a promising strain for industrial PHB production using crude glycerol.


Assuntos
Glicerol , Halomonas , Poliésteres , Plásticos , Hidroxibutiratos
12.
Polymers (Basel) ; 15(3)2023 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-36771983

RESUMO

Coffee waste is an abundant biomass that can be converted into high value chemical products, and is used in various renewable biological processes. In this study, oil was extracted from spent coffee grounds (SCGs) and used for polyhydroxyalkanoate (PHA) production through Pseudomonas resinovorans. The oil-extracted SCGs (OESCGs) were hydrolyzed and used for biohydrogen production through Clostridium butyricum DSM10702. The oil extraction yield through n-hexane was 14.4%, which accounted for 97% of the oil present in the SCGs. OESCG hydrolysate (OESCGH) had a sugar concentration of 32.26 g/L, which was 15.4% higher than that of the SCG hydrolysate (SCGH) (27.96 g/L). Hydrogen production using these substrates was 181.19 mL and 136.58 mL in OESCGH and SCGH media, respectively. The consumed sugar concentration was 6.77 g/L in OESCGH and 5.09 g/L in SCGH media. VFA production with OESCGH (3.58 g/L) increased by 40.9% compared with SCGH (2.54 g/L). In addition, in a fed-batch culture using the extracted oil, cell dry weight was 5.4 g/L, PHA was 1.6 g/L, and PHA contents were 29.5% at 24 h.

13.
J Microbiol Biotechnol ; 33(5): 687-697, 2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-36823146

RESUMO

Identification of novel, electricity-producing bacteria has garnered remarkable interest because of the various applications of electricigens in microbial fuel cell and bioelectrochemical systems. Shewanella marisflavi BBL25, an electricity-generating microorganism, uses various carbon sources and shows broader sugar utilization than the better-known S. oneidensis MR-1. To determine the sugar-utilizing genes and electricity production and transfer system in S. marisflavi BBL25, we performed an in-depth analysis using whole-genome sequencing. We identified various genes associated with carbon source utilization and the electron transfer system, similar to those of S. oneidensis MR-1. In addition, we identified genes related to hydrogen production systems in S. marisflavi BBL25, which were different from those in S. oneidensis MR-1. When we cultured S. marisflavi BBL25 under anaerobic conditions, the strain produced 427.58 ± 5.85 µl of biohydrogen from pyruvate and 877.43 ± 28.53 µl from xylose. As S. oneidensis MR-1 could not utilize glucose well, we introduced the glk gene from S. marisflavi BBL25 into S. oneidensis MR-1, resulting in a 117.35% increase in growth and a 17.64% increase in glucose consumption. The results of S. marisflavi BBL25 genome sequencing aided in the understanding of sugar utilization, electron transfer systems, and hydrogen production systems in other Shewanella species.


Assuntos
Fontes de Energia Bioelétrica , Shewanella , Fontes de Energia Bioelétrica/microbiologia , Shewanella/genética , Glucose , Carbono , Hidrogênio
14.
Polymers (Basel) ; 14(24)2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36559775

RESUMO

Polyhydroxybutyrate (PHB) is a biodegradable bioplastic with potential applications as an alternative to petroleum-based plastics. However, efficient PHB production remains difficult. The main cost of PHB production is attributed to carbon sources; hence, finding inexpensive sources is important. Galactose is a possible substrate for polyhydroxyalkanoate production as it is abundant in marine environments. Marine bacteria that produce PHB from galactose could be an effective resource that can be used for efficient PHB production. In this study, to identify a galactose utilizing PHB producer, we examined 16 Halomonas strains. We demonstrated that Halomonas cerina (Halomonas sp. YK44) has the highest growth and PHB production using a culture media containing 2% galactose, final 4% NaCl, and 0.1% yeast extract. These culture conditions yielded 8.98 g/L PHB (78.1% PHB content (w/w)). When galactose-containing red algae (Eucheuma spinosum) hydrolysates were used as a carbon source, 5.2 g/L PHB was produced with 1.425% galactose after treatment with activated carbon. Since high salt conditions can be used to avoid sterilization, we examined whether Halomonas sp. YK44 could produce PHB in non-sterilized conditions. Culture media in these conditions yielded 72.41% PHB content. Thus, Halomonas sp. YK44 is robust against contamination, allowing for long-term culture and economical PHB production.

15.
J Orthop Sci ; 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36411226

RESUMO

BACKGROUND: Compared with posterior interbody fusion techniques, oblique lateral interbody fusion (OLIF) offers a larger fusion bed with greater intervertebral space access, use of larger cages, more sufficient discectomy, and better end-plate preparation. However, the fusion rate of OLIF is similar to that of other interbody fusions. This study aimed to examine the factors associated with nonunion in OLIF. METHODS: This study examined 201 disc levels from 124 consecutive patients who underwent OLIF for lumbar degenerative diseases with 1-year regular follow-up. Demographic and surgical factors were reviewed from the medical records. Radiological factors measured were sagittal parameters, intervertebral disc angle (DA) before surgery and at the final follow-up, presence of vertebral end-plate lesions, and cage subsidence. Multivariable logistic regression analysis was performed to identify the factors associated with nonunion. RESULTS: Among the 201 discs, 185 (92.0%) achieved union at 1-year followed up. Smoking, surgery at the L5-S1 level, not performing laminectomy, and a large intervertebral DA were factors associated with nonunion in OLIF (all P < 0.05). Multivariable logistic regression analysis showed two independent variables (surgery at L5-S1 level and not performing laminectomy) as risk factors for nonunion in OLIF. CONCLUSIONS: Not performing laminectomy and surgery at the L5-S1 level were risk factors for nonunion in OLIF. To reduce the nonunion rate, surgeons should consider additional stabilization strategies for the L5-S1 OLIF and perform laminectomy.

16.
Bioprocess Biosyst Eng ; 45(10): 1719-1729, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36121506

RESUMO

Polyhydroxybutyrate (PHB) is a bio-based, biodegradable and biocompatible plastic that has the potential to replace petroleum-based plastics. Lignocellulosic biomass is a promising feedstock for industrial fermentation to produce bioproducts such as polyhydroxybutyrate (PHB). However, the pretreatment processes of lignocellulosic biomass lead to the generation of toxic byproducts, such as furfural, 5-HMF, vanillin, and acetate, which affect microbial growth and productivity. In this study, to reduce furfural toxicity during PHB production from lignocellulosic hydrolysates, we genetically engineered Cupriavidus necator NCIMB 11599, by inserting the nicotine amide salvage pathway genes pncB and nadE to increase the NAD(P)H pool. We found that the expression of pncB was the most effective in improving tolerance to inhibitors, cell growth, PHB production and sugar consumption rate. In addition, the engineered strain harboring pncB showed higher PHB production using lignocellulosic hydrolysates than the wild-type strain. Therefore, the application of NAD salvage pathway genes improves the tolerance of Cupriavidus necator to lignocellulosic-derived inhibitors and should be used to optimize PHB production.


Assuntos
Cupriavidus necator , Petróleo , Amidas/metabolismo , Cupriavidus necator/genética , Cupriavidus necator/metabolismo , Açúcares da Dieta/metabolismo , Açúcares da Dieta/farmacologia , Furaldeído/farmacologia , Inibidores do Crescimento/metabolismo , Inibidores do Crescimento/farmacologia , Hidroxibutiratos/metabolismo , Lignina , NAD/metabolismo , NAD/farmacologia , Nicotina/metabolismo , Nicotina/farmacologia , Nitrobenzenos , Petróleo/metabolismo , Plásticos
17.
Polymers (Basel) ; 14(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36080698

RESUMO

As a biodegradable plastic, polyhydroxybutyrate (PHB) has relatively poor mechanical properties, preventing its wider use. Various plasticizers have been studied to improve the mechanical properties of PHB; however, due to the slow degradation speed in the soil environment and lack of evaluation methods, studies on the degradation of PHB with plasticizers are rarely reported. In this study, by applying Microbulbifer sp. SOL66, which is able to degrade PHB very quickly, a benign plasticizer was evaluated with good properties and good degradability, not inhibiting microbial activities. Eight different plasticizers were applied with PHB and Microbulbifer sp. SOL66, PHB film containing 10% and 20% tributyl citrate showed significant biodegradability of PHB. It was confirmed that tributyl citrate could increase the speed of PHB degradation by Microbulbifer sp. SOL66 by 88% at 1 day, although the degree of degradation was similar after 3 days with and without tributyl citrate. By the analysis of microbial degradation, physical, chemical, and mechanical properties, tributyl citrate was shown not only to improve physical, chemical, and mechanical properties but also the speed of microbial degradation.

18.
Spine (Phila Pa 1976) ; 47(22): 1583-1589, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35867596

RESUMO

STUDY DESIGN: Retrospective radiological analysis. OBJECTIVE: To demonstrate the radiological outcome after a modified anterior column realignment (mACR) with partial anterior longitudinal ligament (ALL) release in oblique lateral interbody fusion (OLIF). SUMMARY OF BACKGROUND DATA: Anterior column realignment (ACR) remains a powerful sagittal correction technique in minimally invasive adult spinal deformity surgery and is often combined with posterior column osteotomy (PCO) to achieve more lordosis. OLIF is ideal for ACR because the anterior-to-psoas corridor typically involves the anterolateral half of the disk. METHODS: This study included 112 operated disk levels of 101 consecutive patients who underwent OLIF between L2-L3 and L4-L5 using a 12° lateral cage. The mACR was performed at 73 (65.2%) levels with 30% to 50% sectioning of the ALL. Each operated level was grouped according to the mACR and additional PCO as: (1) no mACR, OLIF only (n=39); (2) mACR with no PCO (n=18); (3) mACR with grade 1 PCO (n=27); (4) mACR with grade 2 PCO (n=22); or (5) mACR with grade 3 PCO (n=6). RESULTS: At the last follow-up, the mean disk lordotic angles were 10.9±2.9°, 12.6±3.0°, 13.3±3.9°, 16.7±3.2°, and 16.8±2.4° in the no mACR, mACR with no PCO, mACR with grade 1 PCO, mACR with grade 2 PCO, and mACR with grade 3 PCO groups, respectively ( P <0.001). The mean increases in disk lordotic angle were 5.8±4.1°, 12.1±6.1°, 13.5±8.7°, 15.8±6.7°, and 17.9±6.2° in each group, respectively ( P <0.001). CONCLUSIONS: ACR can be performed with partial ALL release under direct vision in OLIF without deep dissection into the ventral disk space. The mACR in OLIF is a simple, safe, and effective technique for anterior column lengthening. LEVEL OF EVIDENCE: 4.


Assuntos
Lordose , Fusão Vertebral , Adulto , Humanos , Ligamentos Longitudinais/diagnóstico por imagem , Ligamentos Longitudinais/cirurgia , Fusão Vertebral/métodos , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/cirurgia , Estudos Retrospectivos , Lordose/diagnóstico por imagem , Lordose/cirurgia , Resultado do Tratamento
19.
Polymers (Basel) ; 14(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35808670

RESUMO

Polyhydroxyalkanoate (PHA) is a biodegradable plastic that can be used to replace petroleum-based plastic. In addition, as a medium-chain-length PHA (mcl-PHA), it can be used to provide elastomeric properties in specific applications. Because of these characteristics, recently, there has been much research on mcl-PHA production using inexpensive biomass materials as substrates. In this study, mcl-PHA producers were screened using alkanes (n-octane, n-decane, and n-dodecane) as sources of carbon. The amount of PHA produced by Pseudomonas resinovorans using sole n-octane, n-decane, or n-dodecane was 0.48 g/L, 0.27 g/L, or 0.07 g/L, respectively, while that produced using mixed alkane was 0.74 g/L. As a larger amount of PHA was produced using mixed alkane compared with sole alkane, a statistical mixture analysis was used to determine the optimal ratio of alkanes in the mixture. The optimal ratio predicted by the analysis was a medium with 9.15% n-octane, 6.44% n-decane, and 4.29% n-dodecane. In addition, through several concentration-specific experiments, the optimum concentrations of nitrogen and phosphorus for cell growth and maximum PHA production were determined as 0.05% and 1.0%, respectively. Finally, under the determined optimal conditions, 2.1 g/L of mcl-PHA and 60% PHA content were obtained using P. resinovorans in a 7 L fermenter.

20.
Bioresour Technol ; 359: 127499, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35718248

RESUMO

The present study deals with the utilization of lignocellulosic hydrolysate-based carbon source for exopolysaccharide (EPS) production using newly reported marine Echinicola sediminis BBL-M-12. This bacterium produced 7.56 g L-1 and 5.32 g L-1 of EPS on supplementing 30 g L-1 glucose and 10 g L-1 xylose as the sole carbon source, respectively. Whereas on feeding Miscanthus hydrolysate (MCH) with glucose content adjusting to 20 g L-1, E. sediminis BBL-M-12 produced 6.18 g L-1 of EPS. The inhibitors study showed bacterium could tolerate higher concentrations of fermentation inhibitors include furfural (0.05%), 5-hydroxymethylfurfural (0.1%), vanillin (0.1%) and acetate (0.5%). Moreover, the EPS composition was greatly altered with the type and concentration of carbon source supplied, although ß-D-Glucopyranose, ß-D-Galactopyranose, and ß-D-Xylopyranose were the dominant monomers detected. Interestingly, E. sediminis BBL-M-12 EPS revealed excellent environmental applications like clay flocculation, oil emulsification, and removal of humic acid, textile dye, and heavy metal from the aqueous phase.


Assuntos
Carbono , Lignina , Fermentação , Glucose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...